Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Arch Toxicol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630283

RESUMO

Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38494990

RESUMO

The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days via oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (Cyp4a1, Nr1d1, Acot1, Acot2, Ehhadh, and Vnn1) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including Ccnd1, Ccnb1, Ccna2, and Ccne2 were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.

3.
Curr Protoc ; 4(3): e1003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483112

RESUMO

The human lymphoblastoid cell line TK6 stands out as the most widely employed human cell line in genotoxicity testing, as recommended by various testing guidelines for in vitro assessments. Nevertheless, like many testing cell lines, TK6 lacks functional phase I drug-metabolizing enzymes crucial for chemical genotoxicity evaluations. This protocol introduces a lentivirus-based methodology for establishing a panel of TK6-derived cell lines, each expressing one of 14 cytochrome P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, and CYP3A7). The utilization of a lentiviral expression system ensures stable transduction, offering notable advantages such as sustained transgene expression, high transduction efficiency, positive selection feasibility, and user-friendly application. Additionally, we present a detailed procedure for validating the enhanced expression of each CYP in the established cell lines through real-time PCR, western blotting, and mass spectrometry analysis. Lastly, we exemplify the application of these CYP-expressing TK6 cell lines in genotoxicity testing, employing a flow-cytometry-based in vitro micronucleus test. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Lentivirus production and transduction for TK6 cells Support Protocol: Selecting a single clone of CYP-expressing TK6 cells Basic Protocol 2: Validation of CYP expression in TK6 cell lines Basic Protocol 3: Application of transduced cell lines in flow-cytometry-based micronucleus assay.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lentivirus , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2E1/genética , Linhagem Celular
4.
Toxicol Lett ; 393: 84-95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311193

RESUMO

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 µM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 µM for CQ and 16.3 µM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.


Assuntos
Hidroxicloroquina , Proteína Supressora de Tumor p53 , Humanos , Hidroxicloroquina/toxicidade , Hidroxicloroquina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Dano ao DNA , Cloroquina/toxicidade , Ensaio Cometa
5.
BMC Plant Biol ; 24(1): 117, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365588

RESUMO

BACKGROUND: In paddy fields, the noxious weed barnyard grass secretes 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) to interfere with rice growth. Rice is unable to synthesize DIMBOA. Rice cultivars with high or low levels of allelopathy may respond differently to DIMBOA. RESULTS: In this study, we found that low concentrations of DIMBOA (≤ 0.06 mM) promoted seedling growth in allelopathic rice PI312777, while DIMBOA (≤ 0.08 mM) had no significant influence on the nonallelopathic rice Lemont. DIMBOA treatment caused changes in the expression of a large number of glutathione S-transferase (GST) proteins, which resulting in enrichment of the glutathione metabolic pathway. This pathway facilitates plant detoxification of heterologous substances. The basal levels of GST activity in Lemont were significantly higher than those in PI312777, while GST activity in PI312777 was slightly induced by increasing DIMBOA concentrations. Overexpression of GST genes (Os09g0367700 and Os01g0949800) in these two cultivars enhanced rice resistance to DIMBOA. CONCLUSIONS: Taken together, our results indicated that different rice accessions with different levels of allelopathy have variable tolerance to DIMBOA. Lemont had higher GST activity, which helped it tolerate DIMBOA, while PI312777 had lower GST activity that was more inducible. The enhancement of GST expression facilitates rice tolerance to DIMBOA toxins from barnyard grass root exudates.


Assuntos
Benzoxazinas , Echinochloa , Oryza , Oryza/metabolismo , Plantas Daninhas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
6.
Planta Med ; 90(3): 219-242, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198805

RESUMO

In September 2022, the 3rd International Workshop on pyrrolizidine alkaloids (PAs) and related phytotoxins was held on-line, entitled 'Toxins in botanical drugs and plant-derived food and feed - from science to regulation'. The workshop focused on new findings about the occurrence, exposure, toxicity, and risk assessment of PAs. In addition, new scientific results related to the risk assessment of alkenylbenzenes, a distinct class of herbal constituents, were presented. The presence of PAs and alkenylbenzenes in plant-derived food, feed, and herbal medicines has raised health concerns with respect to their acute and chronic toxicity but mainly related to the genotoxic and carcinogenic properties of several congeners. The compounds are natural constituents of a variety of plant families and species widely used in medicinal, food, and feed products. Their individual occurrence, levels, and toxic properties, together with the broad range of congeners present in nature, represent a striking challenge to modern toxicology. This review tries to provide an overview of the current knowledge on these compounds and indicates needs and perspectives for future research.


Assuntos
Plantas Medicinais , Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/toxicidade
7.
ACS Nano ; 17(24): 24487-24513, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38064282

RESUMO

Brain-computer interfaces (BCIs) have garnered significant attention in recent years due to their potential applications in medical, assistive, and communication technologies. Building on this, noninvasive BCIs stand out as they provide a safe and user-friendly method for interacting with the human brain. In this work, we provide a comprehensive overview of the latest developments and advancements in material, design, and application of noninvasive BCIs electrode technology. We also explore the challenges and limitations currently faced by noninvasive BCI electrode technology and sketch out the technological roadmap from three dimensions: Materials and Design; Performances; Mode and Function. We aim to unite research efforts within the field of noninvasive BCI electrode technology, focusing on the consolidation of shared goals and fostering integrated development strategies among a diverse array of multidisciplinary researchers.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Encéfalo , Eletrodos
8.
Environ Technol ; : 1-13, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118136

RESUMO

ABSTRACTThe problem of wastewater pollution in the production of monosodium glutamate (MSG) is becoming more and more serious. A novel type of chemically modified Salix psammophila powder charcoal (SPPCAM) was synthesized to address the chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) in MSG wastewater. SPPCAM was prepared by carbonization method, in which inorganic ammonium molybdate (AM) was used as modifier and Salix psammophila powder (SPP) was used as raw material. Under optimal treatment conditions, maximum removal rates (removal capacities) of 45.9% (3313.2 mg·L-1) for COD and 29.4% (23.2 mg·L-1) for NH3-N in MSG wastewater were achieved. The treatment results significantly outperforming the unmodified Salix psammophila powder charcoal (SPPC), which only achieved removal rates (removal capacities) of 10.6% (763.9 mg·L-1) for COD and 12.9% (10 mg·L-1) for NH3-N. SPPC and SPPCAM before and after preparation were analysed by FT-IR and XRD, and Mo ions in the form of Mo2C within SPPCAM were successfully loaded. SEM, EDS-Mapping, BET, and other methods were used to analyse SPPCAM before and after MSG wastewater treatment, demonstrating that SPPCAM effectively treated organic pollutants in monosodium glutamate wastewater. The NH3-N in the treated MSG wastewater has reached the standard of safe discharge.

9.
Environ Technol ; : 1-11, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970876

RESUMO

In order to improve the functionality of cellulosic materials research and development of high performance soluble materials. Therefore, the Fe3O4/CMS composite membrane was prepared by using carboxymethyl salix powder (CMS) and Fe3O4 as raw materials, 1-propenyl-3-methylimidazolium chloride and dimethyl sulfoxide as dissolution system. The effects of swelling time, swelling temperature, pH and ionic strength on the swelling performance of Fe3O4/CMS composite membranes and the swelling kinetics of the composite membranes were studied. The structure of the composite membrane was characterized by SEM, FT-IR, XRD and TG. The results showed that the swelling degree reached 5.54 g·g-1, when the swelling time was 45 min, the swelling temperature was 65°C, the pH was 5 and the ionic strength was 0.08 mol·L-1. The initial phase of dissolution of the composite membrane fits well with the Fickian diffusion model, and the whole dissolution process belongs to the Schott model, indicating that the main role of the dissolution process is the diffusion of water molecules, while the composite membrane can be preserved for a long time at high temperature, which provides sustainability for the composite membrane. The characterization results showed that the surface of Fe3O4/CMS composite film was rough with small grooves. The O-H effect was enhanced and the Fe-O absorption peak appeared at 600 cm-1, indicating that Fe3O4 had been successfully loaded onto the cellulose membrane. The Fe3O4/CMS composite membrane belonged to cellulose type II structure, meanwhile, the composite membrane had good thermal stability.

10.
Toxicol Sci ; 197(1): 69-78, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788138

RESUMO

Lapatinib, an oral tyrosine kinase inhibitor used as a first-line treatment for HER2-positive breast cancer, has been reported to be associated with hepatotoxicity; however, the underlying mechanisms remain unclear. In this study, we report that lapatinib causes cytotoxicity in multiple types of hepatic cells, including primary human hepatocytes, HepaRG cells, and HepG2 cells. A 24-h treatment with lapatinib induced cell cycle disturbances, apoptosis, and DNA damage, and decreased the protein levels of topoisomerase in HepG2 cells. We investigated the role of cytochrome P450 (CYP)-mediated metabolism in lapatinib-induced cytotoxicity using our previously established HepG2 cell lines, which express each of 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrate that lapatinib is metabolized by CYP1A1, 3A4, 3A5, and 3A7. Among these, lapatinib-induced cytotoxicity and DNA damage were attenuated in cells overexpressing CYP3A5 or 3A7. Additionally, we measured the production of three primary metabolites of lapatinib (O-dealkylated lapatinib, N-dealkylated lapatinib, and N-hydroxy lapatinib) in CYP1A1-, 3A4-, 3A5-, and 3A7-overexpressing HepG2 cells. We compared the cytotoxicity of lapatinib and its 3 metabolites in primary human hepatocytes, HepaRG cells, and HepG2 cells and demonstrated that N-dealkylated lapatinib is more toxic than the parent drug and the other metabolites. Taken together, our results indicate that lapatinib-induced cytotoxicity involves multiple mechanisms, such as apoptosis and DNA damage; that N-dealkylated lapatinib is a toxic metabolite contributing to the toxic effect of lapatinib; and that CYP3A5- and 3A7-mediated metabolism plays a role in attenuating the cytotoxicity of lapatinib.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Lapatinib/toxicidade , Lapatinib/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
11.
Arch Toxicol ; 97(12): 3227-3241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794255

RESUMO

Cannabidiol (CBD) is one of the most prevalent and abundant cannabinoids extracted from the plant Cannabis sativa. CBD has been reported to induce male reproductive toxicity in animal models. In this study, we examined the effects of CBD and its main metabolites, 7-carboxy-CBD and 7-hydroxy-CBD, on primary human Leydig cells, which play a crucial role in male reproductive health. Our results showed that CBD, at concentrations below the Bayesian benchmark dose (BMD)50, inhibited the growth of human Leydig cells by arresting the cell cycle at G1/S transition, disrupting cell cycle regulators, and decreasing DNA synthesis. Concentration-response transcriptomic profiling identified that apoptosis was one of the top biological processes significantly affected by treatment with CBD for 24 h. The occurrence of apoptosis was confirmed by increased activation of caspase-3/7 and an increased proportion of annexin V and propidium iodide (PI)-positive cells. Similar to CBD, both 7-carboxy-CBD and 7-hydroxy-CBD decreased cell viability and induced apoptosis after treatment for 24 h. 7-Hydroxy-CBD and 7-carboxy-CBD showed lower cytotoxicity than CBD, and 7-carboxy-CBD had the lowest cytotoxicity among the three compounds. Our findings revealed that CBD and its main metabolites can cause adverse effects on primary human Leydig cells.


Assuntos
Canabidiol , Canabinoides , Masculino , Animais , Humanos , Canabidiol/toxicidade , Teorema de Bayes , Células Intersticiais do Testículo , Apoptose
12.
J Pers Soc Psychol ; 125(4): 720-729, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37439714

RESUMO

Many real-life examples-from interpersonal rivalries to international conflicts-suggest that people actively engage in competitive behavior even when it is negative sum (benefiting the self at a greater cost to others). This often leads to loss spirals where everyone-including the winner-ends up losing. Our research seeks to understand the psychology of such negative-sum competition in a controlled setting. To do so, we introduce an experimental paradigm in which paired participants have the option to repeatedly perform a behavior that causes a relatively small gain for the self and a larger loss to the other. Although they have the freedom not to engage in the behavior, most participants actively do so and incur substantial losses. We propose that an important reason behind the phenomena is shallow thinking-focusing on the immediate benefit to the self while overlooking the downstream consequences of how the behavior will influence their counterparts' actions. In support of the proposition, we find that participants are less likely to engage in negative-sum behavior, if they are advised to consider the downstream consequences of their actions, or if they are put in a less frenzied decision environment, which facilitates deeper thinking (acting in discrete vs. continuous time). We discuss how our results differ from prior findings and the implications of our research for mitigating negative-sum competition and loss spirals in real life. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Comportamento Competitivo , Humanos , Inquéritos e Questionários
13.
Arch Toxicol ; 97(10): 2785-2798, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37486449

RESUMO

N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates. There are only limited data on the genotoxicity of nitrosamines in human cell systems. In this study, we used metabolically competent human HepaRG cells, whose metabolic capability is comparable to that of primary human hepatocytes, to evaluate the genotoxicity of eight nitrosamines [N-cyclopentyl-4-nitrosopiperazine (CPNP), N-nitrosodibutylamine (NDBA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA), and N-nitrosomethylphenylamine (NMPA)]. Under the conditions we used to culture HepaRG cells, three-dimensional (3D) spheroids possessed higher levels of CYP activity compared to 2D monolayer cells; thus the genotoxicity of the eight nitrosamines was investigated using 3D HepaRG spheroids in addition to more conventional 2D cultures. Genotoxicity was assessed as DNA damage using the high-throughput CometChip assay and as aneugenicity/clastogenicity in the flow-cytometry-based micronucleus (MN) assay. Following a 24-h treatment, all the nitrosamines induced DNA damage in 3D spheroids, while only three nitrosamines, NDBA, NDEA, and NDMA, produced positive responses in 2D HepaRG cells. In addition, these three nitrosamines also caused significant increases in MN frequency in both 2D and 3D HepaRG models, while NMBA and NMPA were positive only in the 3D HepaRG MN assay. Overall, our results indicate that HepaRG spheroids may provide a sensitive, human-based cell system for evaluating the genotoxicity of nitrosamines.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/toxicidade , Dano ao DNA , Dimetilnitrosamina/toxicidade , Mutagênicos/toxicidade
14.
J Phys Chem A ; 127(25): 5435-5445, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37319364

RESUMO

The concern of energy and the environment provides great inducement for fundamental research on the mechanisms of oxidation of char-bound nitrogen (char(N)). In the present study, based on the armchair(N) model, we investigated its reaction mechanism at an atomistic level and with a comprehensive study of the effect of the model surface. Several pathways are found by density functional theory (DFT) calculations for the oxidation of armchair(N). The main gaseous species released during the oxidation are NO, HCN, CO, and CO2. The evaluated optimal reaction pathways are selected to investigate the model-dependent reactivity. According to our calculations, the oxidation of the simplified top armchair(N) model (TM) will be much more competitive than that of the simplified edge armchair(N) model (EM). In the route giving NO, the decreased stability of the intermediates makes the reaction of TM more favorable. In the route giving HCN, the described reduced mechanism and the larger exothermicity and lower highest-energy transition state will be responsible for the priority. Further analysis of the kinetics gives the evidence for the competitiveness: the rate constants for most of the steps of the TM, such as HCN desorption, surface bond dissociation, ring closure and opening, and oxygen insertion and migration, are higher than that of the EM. Therefore, a conclusion can be drawn that the oxidation of the armchair(N) will mainly take place from the top surface rather than the edge surface. The results can be used to supplement present understanding of the oxidation of armchair structure, which is extremely crucial for the development of the kinetics model to better predict the NOx emissions during the air-staged combustion.

15.
Environ Sci Pollut Res Int ; 30(35): 83260-83269, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37338687

RESUMO

A group of Bacillus sp. was extracted from monosodium glutamate wastewater. Lignocellulose/montmorillonite composite was selected as the carrier. Lignocellulose/montmorillonite composite immobilized Bacillus sp./calcium alginate microspheres were prepared by immobilized microorganism techniques. The microspheres were used to treat monosodium glutamate wastewater with significantly reduced ammonia nitrogen (NH3-N) and chemical oxygen demand (COD) concentrations. The optimum preparation conditions of microspheres in the treatment of NH3-N and COD of monosodium glutamate wastewater were studied. The concentration of sodium alginate was 2.0 wt%, lignocellulose/montmorillonite was 0.06 wt%, Bacillus sp. was 1.0 wt%, CaCl2 solution was 2.0 wt%, coagulation time was 12 h, and the removal capacities of NH3-N and COD were 44832 and 78345 mg/L, respectively. The surface structure, element content, functional group change, and crystal structure of the microspheres were characterized by SEM, EDS, and other methods. The results showed that the -COOH in lignocellulose/montmorillonite and the -OH in the Bacillus sp. form intermolecular hydrogen bonds. The Si-O and Al-O bonds in lignocellulose/montmorillonite reacted with sodium ions in sodium alginate. New crystal structures appear inside the material after crosslinking, and the microspheres was formed. Thus, the study has shown that the microspheres were successfully prepared and contributes to the treatment of NH3-N and COD in monosodium glutamate wastewater. This work can provide an interesting strategy for the removal of COD and NH3-N in industrial wastewater by reasonably combining bio-physicochemical processes.


Assuntos
Bacillus , Águas Residuárias , Glutamato de Sódio , Bentonita , Alginatos
16.
Cell Rep ; 42(5): 112515, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37171960

RESUMO

Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (KD ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion. InlB-overexpressing non-pathogenic Listeria innocua also displays LAP-InlB interplay. In silico predictions reveal that a pocket region in the C-terminal domain of tetrameric LAP is the binding site for InlB. LAP variants containing mutations in negatively charged (E523S, E621S) amino acids in the C terminus confirm altered binding conformations and weaker affinity for InlB. InlB transforms the housekeeping enzyme, AdhE (LAP), into a moonlighting pathogenic factor by fastening on the cell surface.


Assuntos
Listeria monocytogenes , Listeria , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Listeria/metabolismo , Listeria monocytogenes/metabolismo , Membrana Celular/metabolismo , Álcool Desidrogenase/metabolismo
17.
Biosensors (Basel) ; 13(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232858

RESUMO

The effective detection and release of circulating tumor cells (CTCs) are of great significance for cancer diagnosis and monitoring. The microfluidic technique has proved to be a promising method for CTCs isolation and subsequent analysis. However, complex micro-geometries or nanostructures were often constructed and functionalized to improve the capture efficiency, which limited the scale-up for high-throughput production and larger-scale clinical applications. Thus, we designed a simple conductive nanofiber chip (CNF-Chip)-embedded microfluidic device with a herringbone microchannel to achieve the efficient and specific capture and electrical stimulation-triggered rapid release of CTCs. Here, the most used epithelial cell adhesion molecule (EpCAM) was selected as the representative biomarker, and the EpCAM-positive cancer cells were mainly studied. Under the effects of the nanointerface formed by the nanofibers with a rough surface and the herringbone-based high-throughput microfluidic mixing, the local topographic interaction between target cells and nanofibrous substrate in the microfluidic was synergistically enhanced, and the capture efficiency for CTCs was further improved (more than 85%). After capture, the sensitive and rapid release of CTCs (release efficiency above 97%) could be conveniently achieved through the cleavage of the gold-sulfur bond by applying a low voltage (-1.2 V). The device was successfully used for the effective isolation of CTCs in clinical blood samples from cancer patients, indicating the great potential of this CNF-Chip-embedded microfluidic device in clinical applications.


Assuntos
Técnicas Analíticas Microfluídicas , Nanofibras , Células Neoplásicas Circulantes , Humanos , Nanofibras/química , Molécula de Adesão da Célula Epitelial , Microfluídica , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral
18.
Regul Toxicol Pharmacol ; 141: 105410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37210026

RESUMO

Propranolol is a widely used ß-blocker that can generate a nitrosated derivative, N-nitroso propranolol (NNP). NNP has been reported to be negative in the bacterial reverse mutation test (the Ames test) but genotoxic in other in vitro assays. In the current study, we systematically examined the in vitro mutagenicity and genotoxicity of NNP using several modifications of the Ames test known to affect the mutagenicity of nitrosamines, as well as a battery of genotoxicity tests using human cells. We found that NNP induced concentration-dependent mutations in the Ames test, both in two tester strains that detect base pair substitutions, TA1535 and TA100, as well as in the TA98 frameshift-detector strain. Although positive results were seen with rat liver S9, the hamster liver S9 fraction was more effective in bio-transforming NNP into a reactive mutagen. NNP also induced micronuclei and gene mutations in human lymphoblastoid TK6 cells in the presence of hamster liver S9. Using a panel of TK6 cell lines that each expresses a different human cytochrome P450 (CYP), CYP2C19 was identified as the most active enzyme in the bioactivation of NNP to a genotoxicant among those tested. NNP also induced concentration-dependent DNA strand breakage in metabolically competent 2-dimensional (2D) and 3D cultures of human HepaRG cells. This study indicates that NNP is genotoxic in a variety of bacterial and mammalian systems. Thus, NNP is a mutagenic and genotoxic nitrosamine and a potential human carcinogen.


Assuntos
Mutagênicos , Propranolol , Ratos , Animais , Cricetinae , Humanos , Mutagênicos/toxicidade , Propranolol/toxicidade , Mutação , Dano ao DNA , Mutagênese , Testes de Mutagenicidade/métodos , Mamíferos
19.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049906

RESUMO

1,1,1-Trichloroethane (1,1,1-TCA) is a typical organochloride solvent in groundwater that poses threats to human health and the environment due to its carcinogenesis and bioaccumulation. In this study, a novel composite with nanoscale zero-valent iron (nZVI) supported by polycaprolac-tone (PCL)-modified biochar (nZVI@PBC) was synthesized via solution intercalation and liquid-phase reduction to address the 1,1,1-TCA pollution problem in groundwater. The synergy effect and improvement mechanism of 1,1,1-TCA removal from simulated groundwater in the presence of nZVI@PBC coupling with Shewanella putrefaciens CN32 were investigated. The results were as follows: (1) The composite surface was rough and porous, and PCL and nZVI were loaded uniformly onto the biochar surface as micro-particles and nanoparticles, respectively; (2) the optimal mass ratio of PCL, biochar, and nZVI was 1:7:2, and the optimal composite dosage was 1.0% (w/v); (3) under the optimal conditions, nZVI@PBC + CN32 exhibited excellent removal performance for 1,1,1-TCA, with a removal rate of 82.98% within 360 h, while the maximum removal rate was only 41.44% in the nZVI + CN32 treatment; (4) the abundance of CN32 and the concentration of adsorbed Fe(II) in the nZVI@PBC + CN32 treatment were significantly higher than that in control treatments, while the total organic carbon (TOC) concentration first increased and then decreased during the culture process; (5) the major improvement mechanisms include the nZVI-mediated chemical reductive dechlorination and the CN32-mediated microbial dissimilatory iron reduction. In conclusion, the nZVI@PBC composite coupling with CN32 can be a potential technique to apply for 1,1,1-TCA removal in groundwater.


Assuntos
Água Subterrânea , Shewanella putrefaciens , Poluentes Químicos da Água , Humanos , Ferro , Carvão Vegetal , Poluentes Químicos da Água/análise , Adsorção
20.
Adv Mater ; 35(21): e2300216, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36912443

RESUMO

The acidic microenvironment of tumors significantly reduces the anti-tumor effect of immunotherapy. Herein, a hierarchically structured fiber device is developed as a local drug delivery system for remodeling the acidic tumor microenvironment (TME) to improve the therapeutic effect of immunotherapy. Proton pump inhibitors in the fiber matrix can be sustainedly released to inhibit the efflux of intracellular H+ from tumor cells, resulting in the remodeling of the acidic TME. The targeted micelles and M1 macrophage membrane-coated nanoparticles in internal cavities of fiber can induce immunogenic cell death (ICD) of tumor cells and phenotypic transformation of tumor-associated macrophages (TAMs), respectively. The relief of the acidity in the TME further promotes ICD and the polarization of TAMs, alleviating the immunosuppressive microenvironment and synergistically enhancing the antitumor immune response. In vivo results reveal this local drug delivery system restores the pH value of TME from 6.8 to 7.2 and exhibit an excellent immunotherapeutic effect.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Sistemas de Liberação de Medicamentos , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...